

A remote operated Tic-Tac-Toe playing robot submitted to the **2023 McMaster Engineering Competition**

Senior Design Challenge

66

Design and manufacture a vehicle to compete in a tournament-style obstacle course, relaying to win an advanced tic-tac-toe style game."

Our Team:

Aidan Goodyer Software Engineering Level III

Jasan Rubes Mechanical Engineering Level III

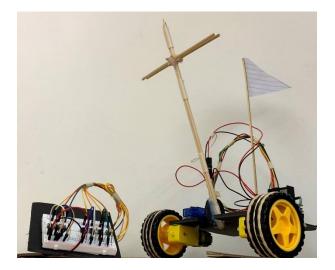
Mechanical Engineering Level III

Objectives

- Compete and Win Against Other Teams
- X Small, Lightweight, and Fast Design
- ✗ Fully Wireless System

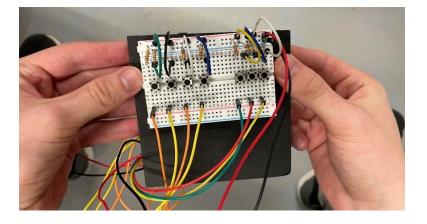
Constraints

- X Max 2 Breadboards
- X Max 2 ESP32 Modules
- 🗙 Max 1 Motor Driver
- X Bot cannot touch course boundaries.


Bill Of Materials

- ✗ 1x Ball Bearing Wheels
- × 2x ESP8266 + cables
- 🗙 1x Foam poster board
- 🗙 1x 9-gram servo
- 🗙 2x Motors
- ✗ 2x Motor Wheels
- × 2x 9V batteries + 2 connectors
- ★ 1x L298N motor driver
- ✗ 1x Breadboard Jumper cables

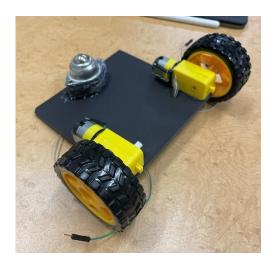
- X Sticks Craft cabinet Resistor Box
- 🗙 1x Pipe Cleaner
- 🗙 6x Rubber Bands
- × 5x Wooden Skewers
- X Duct Tape
- X Masking Tape
- X Hot glue gun & glue sticks
- X Lined Paper
- ✗ 7x buttons

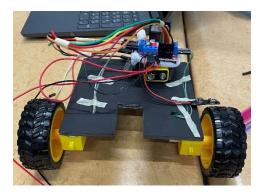


Presenting Our Final Design

The TicTacToeBot

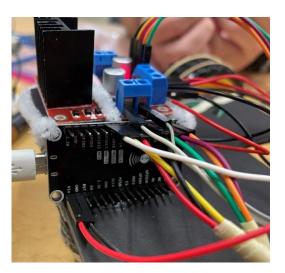
The Controller

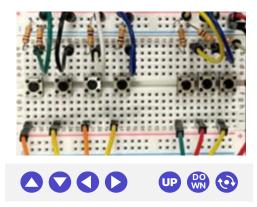



Our Design Components

The Base

- ✗ 3 Points of Contact
- ✗ 360-degree Spinning
- X Small area
- × Effective use of material
- × Ease of component removal


The Lever

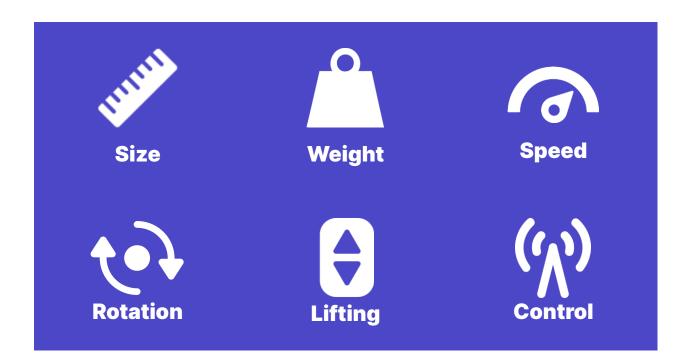

- ✗ Long reach
- End-Point Rotation
- × Compact center of mass
- X Simple and Efficient

The Brain

- ★ ESP32 Module
- Facilitates wireless
 Communication
- × Reduced Interference
- X Pin-Accessible Mounting Point

The Controller

- × Directional Control
- × Lever Elevation Buttons
- ✗ Dedicated Spin Button
- ✗ Low Latency Polling


The Code

- ✗ Fault Tolerant
- 🗙 Modular
- Facilitates Wi-Fi
 Communication

https://github.com/agoodyer/TicTacToeBot

Our Design Justification

Being the smallest, lightest, and fastest bot in the competition, the TicTacToeBot design is purposefully minimalistic in design.

Featuring a dedicated **SPIN** button, the TicTacToeBot can make nimble direction changes by rotating its wheels in opposing directions, similar to a tank turn.

The TicTacToeBot opts for a fully wireless Wi-Fi enabled robot and controller system, to make the bot as independent as possible.

TicTacToeBot

A Clip of TicTacToeBot Traversing the Course

- * Achieved Fastest Time-To-Complete of Any Competing Team
- ★ Placed **2nd Overall** in the Competition (\$200 Prize)

